C1		
DIAGRAMS	STEPS	WHAT THIS DOES (justification)
Å B	 Start with a segment length for the sides of the triangle. 	Gives us a length to use for the sides of the triangle
Å	2. Construct circle A with the given radius.	Shows all the points a fixed distance from point A
A B	3. Choose point <i>B</i> on circle <i>A</i> and connect <i>A</i> and <i>B</i> to make the first side of equilateral triangle <i>ABC</i> .	Starts the triangle with side AB
	4. Construct circle <i>B</i> with the same radius as circle <i>A</i> .	Shows all the points a fixed distance from point B
Č A B	5. Label point C where circles A and B intersect.	The third vertex (point) of the equilateral triangle because C is on both circles A and B. AB = AC = BC because circles A and B are constructed with the same radius, and AC, BC, and AB are all radii of circle A and/or circle B
AB	6. Connect <i>A</i> to <i>C</i> and <i>B</i> to <i>C</i> to complete the second and third sides of equilateral triangle <i>ABC</i> .	The other two sides of the triangle

C2 1.2 REGULAR HEXAGON	Name	C2
DIAGRAMS	STEPS	WHAT THIS DOES (justification)
Ĥ	1. Use the same radius for all circles in this construction. Start with circle <i>H</i> . All vertices of the hexagon will be on circle <i>H</i> .	All points that are a fixed distance from point <i>H</i> .
H	2. Choose a point on circle <i>H</i> and label it <i>E</i> .	The first vertex (corner) of the hexagon.
H	3. Construct circle <i>E</i> (same radius as circle <i>H</i>). Label points <i>X</i> and <i>N</i> where circles <i>H</i> and <i>E</i> intersect.	Two more vertices (corners) of the hexagon both the distance EH from points E and H
X H H N	4. Construct circle <i>X</i> and label point <i>A</i> where circles <i>H</i> and <i>X</i> intersect.	One more vertex (corner) of the hexagon which is the distance EH from points X and H
G H E	5. Construct circle <i>A</i> and label point <i>G</i> where circles <i>H</i> and <i>A</i> intersect.	One more vertex (corner) of the hexagon which is the distance EH from points A and H
	6. Construct circle G and label point O where circles <i>H</i> and G intersect.	One more vertex (corner) of the hexagon which is the distance EH from points G and H
	7. Connect points <i>E, X, A, G, O, and N</i> to complete the regular hexagon.	The sides of the hexagon all equal based on the work in steps 1 through 6 – a series of circles with the same radius

C3 1.3 BISECT AN ANGLE	Name	C3
DIAGRAMS	STEPS	WHAT THIS DOES (justification)
B Č	1. Start with ∠ABC.	Gives us angle to bisect
B C	2. Construct circle <i>B</i> that intersects both sides of $\angle ABC$.	Shows all the points a fixed distance from vertex B
B E C	3. Label points <i>D</i> and <i>E</i> where circle <i>B</i> intersects the sides of ∠ABC	Gives us BE = BD because they are both radii of circle B
	4. Construct circle <i>D</i> with any radius.	Gives us all points a fixed distance from D
	5. Construct circle <i>E</i> with the same radius you used to construct circle <i>D</i> .	Gives us all points a fixed distance from E so that the points of intersection of circle E and circle D are equal.
	6. Mark the intersection of circle D and circle E that is inside $\angle ABC$. Label the intersection point F .	Gives us F, a point equidistant from the sides of angle ABC because F is equidistant from points D and E
	7. Draw \overrightarrow{BF} which is the bisector of $\angle ABC$	Ray BF shows the set of points equidistant from the sides of angle ABC (BA and BC) which means RF bisects the angle

DIAGRAMS	STEPS	WHAT THIS DOES (justification)
Ă B	1. Start with \overline{AB} .	Gives me a segment to bisect.
A	2. Construct circle <i>A</i> with a radius that is greater than half the length of \overline{AB} .	Gives me all points a fixed distance from point A.
A B	3. Construct circle <i>B</i> with the same radius as circle <i>A</i> .	Gives me all points a fixed distance from point B.
	4. Label points <i>C</i> and <i>D</i> where circles <i>A</i> and <i>B</i> intersect.	Gives me two points, C and D that are equidistant from points A and B
	5. Construct \overleftarrow{CD} , the perpendicular bisector of \overrightarrow{AB} and label the point where \overleftarrow{CD} and \overrightarrow{AB} intersect with an <i>M</i> .	Gives all points equidistant from points A and B, so the intersection of CD and AB, point M, must be equidistant from points A and B making it the bisector of AB. Since the 180° angle AMB is also bisected AMC must be 90° resulting in perpendicular lines.

25 1.5 COPY AN ANGLE DIAGRAMS	Name STEPS	WHAT THIS DOES (justification)
	31EF3	WHAT THIS DOES (justification)
B t	1. Start with ∠ABC.	An angle to copy
B C B'	2. From a new endpoint <i>B</i> ′, draw a ray. This will become one side of the new angle.	Gives us one side of the new angle Any ray will do because length of the side of an angle does not matte when we copy an angle
	3. Place the compass pivot point on <i>B</i> . Set the radius to a length so that an arc will intersect both sides. Draw an arc across both sides of the angle, creating the points <i>J</i> and <i>K</i> as shown.	Marks 2 points (J and K), one on each side of the angle, that are equidistant from the vertex B This means that $\overline{JK} \cong \overline{J'K'}$
	4. Without changing the radius, place the compass pivot point on <i>B</i> ' and draw an arc, creating point <i>J</i> ' as shown.	Marks J' on the first side of the angle such that the distance between J' and B' is the same as t distance between J and B. It also shows all possible locations for H with respect to the vertex B'
B J C B' J'	5. Set the compass on <i>J</i> and adjust the radius length so the pencil is on point <i>K</i> .	Measures the distance between H and J
B J C B' J'	6. Without changing the compass radius, move the compass pivot point to <i>J</i> ' and draw a new arc across the first arc, creating point <i>L</i> where they cross.	Marks locations that are the distance JK away from point J'
B J C B' J'	7. Draw a ray from <i>B</i> ' through <i>K</i> '.	The intersection of the arcs show the location for K' so that $\overline{BK} \cong \overline{B'K'}$ and $\overline{BJ} \cong \overline{B'J'}$ since we already have $\overline{JK} \cong \overline{J'K'}$, we g us 2 identical triangles and therefore identical angles B and B'

C6 PARALLEL LINES	Name	C6
DIAGRAMS	STEPS	WHAT THIS DOES (justification)
S.	1. Start with any line and a point not on the line.	A line and a point through which to construct a line parallel to the first line
S. Q.R	2. Mark and label any two points on the line	Two points on the line to be vertices of a triangle.
Q R	3. Connect the three points to make a triangle. (triangle QRS in this example)	A triangle to rotate 180°.
Q R	4. Construct the perpendicular bisector of one of the two sides that are not on the original line, in this example, <i>SR</i> and mark point M	A midpoint to rotate the triangle around so that alternate interior angles will be congruent.
	5. Set the compass on point <i>M</i> with radius \overline{MQ} and construct circle M.	All possible points for P, the image of Q, when Q is rotated.
Q R	6. Draw the diameter of circle M from point Q and label the other endpoint of the diameter P so that you have diameter \overline{QP} .	P at the other end of the diameter is a 180° rotation about point M of point Q so when connected with S and R, alternate interior angles will be congruent (rotation preserves angle measure).
S P M Q R	7. Draw \overrightarrow{SP} . This line is parallel to the original line \overrightarrow{QR}	A line parallel to QR because the triangle has been rotated making alternate interior angles congruent